2) Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 1994;39:23-42.
3) Flammer J. The vascular concept of glaucoma. Surv Ophthalmol 1994;39 Suppl:S23-6.
4) Weinreb RN, Harris A. Ocular Blood Flow in Glaucoma. Amsterdam: Kugler Publications, 2009.
5) Lee KM, Lee EJ, Kim TW. Juxtapapillary choroid is thinner in normal‐ tension glaucoma than in healthy eyes. Acta Ophthalmol 2016;94:e697-708.
8) Suh MH, Park JW, Khandelwal N, Agrawal R. Peripapillary choroidal vascularity index and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 2019;60:3768-75.
9) Lieberman MF, Maumenee AE, Green WR. Histologic studies of the vasculature of the anterior optic nerve. Am J Ophthalmol 1976;82:405-23.
10) Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the human optic nerve. Am J Ophthalmol 1995;120:92-102.
11) Anderson DR, Braverman S. Reevaluation of the optic disk vasculature. Am J Ophthalmol 1976;82:165-74.
12) Kim DW, Jeoung JW, Kim YW, et al. Prelamina and lamina cribrosa in glaucoma patients with unilateral visual field loss. Invest Ophthalmol Vis Sci 2016;57:1662-70.
14) Yang H, Downs JC, Girkin C, et al. 3‐D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 2007;48:4597-607.
17) Park JW, Suh MH, Agrawal R, Khandelwal N. Peripapillary choroidal vascularity index in glaucoma‐a comparison between spectral‐ domain OCT and OCT angiography. Invest Ophthalmol Vis Sci 2018;59:3694-701.
19) Agrawal R, Chhablani J, Tan KA, et al. Choroidal vascularity index in central serous chorioretinopathy. Retina 2016;36:1646-51.
20) Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retin Eye Res 2020;77:100829.
21) Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 2016;123:2509-18.
24) Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 2014;55:3893-9.
25) Sonoda S, Sakamoto T, Yamashita T, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 2015;159:1123-31.e1.
26) Park HY, Lee NY, Shin HY, Park CK. Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging optical coherence tomography. J Glaucoma 2014;23:225-31.
27) Roberts KF, Artes PH, O’Leary N, et al. Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol 2012;130:980-6.
29) Maul EA, Friedman DS, Chang DS, et al. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 2011;188:1571-9.
31) Lee EJ, Kim TW, Weinreb RN, et al. Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes: central corneal thickness, axial length, and lamina cribrosa thickness. Graefes Arch Clin Exp Ophthalmol 2013;251:847-54.
32) Chung HJ, Park CK. Factors determining the peripapillary retinal nerve fiber distribution. J Glaucoma 2014;23:471-6.