1) Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982;100:135-46.
2) Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989;107:453-64.
3) Choi JA, Park HY, Jung KI, et al. Difference in the properties of retinal nerve fiber layer defect between superior and inferior visual field loss in glaucoma. Invest Ophthalmol Vis Sci 2013;54:6982-90.
4) Duggan C, Sommer A, Auer C, Burkhard K. Automated differential threshold perimetry for detecting glaucomatous visual field loss. Am J Ophthalmol 1985;100:420-3.
5) Susanna R Jr, Nicolela MT, Soriano DS, Carvalho C. Automated perimetry: a study of the glaucoma hemifield test for the detection of early glaucomatous visual field loss. J Glaucoma 1994;3:12-6.
6) De Moraes CG, Prata TS, Tello C, et al. Glaucoma with early visual field loss affecting both hemifields and the risk of disease progression. Arch Ophthalmol 2009;127:1129-34.
7) Cheng HC, Guo CY, Chen MJ, et al. Patient-reported vision-related quality of life differences between superior and inferior hemifield visual field defects in primary open-angle glaucoma. JAMA Ophthalmol 2015;133:269-75.
8) Choi JA, Park HY, Shin HY, Park CK. Optic disc characteristics in patients with glaucoma and combined superior and inferior retinal nerve fiber layer defects. JAMA Ophthalmol 2014;132:1068-75.
9) Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh) 1975;53:34-43.
12) Kim YN, Kang JH, Kim JS, Lee JH. Correlation between retinal nerve fiber layer thickness and visual field in normal tension glaucoma. J Korean Ophthalmol Soc 2005;46:1532-9.
13) Ritch R, Shields MB, Krupin T. The glaucomas. 2nd ed. St. Louis: The CV Mosby Co, 1996;769.
14) El Beltagi TA, Bowd C, Boden C, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology 2003;110:2185-91.
15) Harbin TS Jr, Podos SM, Kolker AE, Becker B. Visual field progression in open-angle glaucoma patients presenting with monocular field loss. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1976;81:253-7.
16) Drance SM. The early field defects in glaucoma. Invest Ophthalmol 1969;8:84-91.
17) Jin HN, Kang YS, Sung MS, Park SW. Characteristics of visual field defects in Korean Advanced glaucoma. J Korean Ophthalmol Soc 2021;62:1105-15.
20) Matsuura M, Murata H, Fujino Y, et al. Relationship between novel intraocular pressure measurement from Corvis ST and central corneal thickness and corneal hysteresis. Br J Ophthalmol 2020;104:563-8.
23) Iwase A, Araie M. Primary open-angle glaucoma with initial visual field damage in the superior and inferior hemifields: comparison in a population-based setting. J Glaucoma 2019;28:493-7.
24) Leske MC, Wu SY, Hennis A, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008;115:85-93.
26) Lee EJ, Kim TW, Weinreb RN, et al. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2011;152:87-95.e1.
27) Ren R, Wang N, Li B, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci 2009;50:2175-84.
28) Radius RL. Anatomy of the optic nerve head and glaucomatous optic neuropathy. Surv Ophthalmol 1987;32:35-44.
29) Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol 2015;159:512-8.e1.
30) Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology 2013;120:1790-7.
31) Dai Y, Jonas JB, Huang H, et al. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 2013;54:2013-8.
32) Sung MS, Heo H, Park SW. Microstructure of parapapillary atrophy is associated with parapapillary microvasculature in myopic eyes. Am J Ophthalmol 2018;192:157-68.
33) Lin F, Chen S, Song Y, et al. Classification of visual field abnormalities in highly myopic eyes without pathologic change. Ophthalmology 2022;129:803-12.
34) Ma F, Dai J, Sun X. Progress in understanding the association between high myopia and primary open-angle glaucoma. Clin Exp Ophthalmol 2014;42:190-7.
35) Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 1999;106:2010-5.
36) Kimura Y, Hangai M, Morooka S, et al. Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci 2012;53:6472-8.
37) Chuangsuwanich T, Tun TA, Braeu FA, et al. How myopia and glaucoma influence the biomechanical susceptibility of the optic nerve head. Invest Ophthalmol Vis Sci 2023;64:12.
38) Chang JH, Chun BY, Shin JP. The stereoscopic acuity in patients with unilateral or bilateral visual field defects. J Korean Ophthalmol Soc 2014;55:734-9.