3) Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991;109:77-83.
4) Banegas SA, Antón A, Morilla A, et al. Evaluation of the retinal nerve fiber layer thickness, the mean deviation, and the visual field index in progressive glaucoma. J Glaucoma 2016;25:e229-35.
6) Öhnell H, Heijl A, Brenner L, et al. Structural and functional progression in the early manifest glaucoma trial. Ophthalmology 2016;123:1173-80.
7) Bowd C, Zangwill LM, Weinreb RN, et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 2017;175:37-44.
8) Banister K, Boachie C, Bourne R, et al. Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection? Ophthalmology 2016;123:930-8.
9) Mwanza JC, Budenz DL, Warren JL, et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 2015;99:732-7.
11) Drance SM. The early field defects in glaucoma. Invest Ophthalmol 1969;8:84-91.
13) Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 1994;39:23-42.
14) Drance S, Anderson DR, Schulzer M; Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 2001;131:699-708.
15) Lee SS, Schwartz B. Role of the temporal cilioretinal artery in retaining central visual field in open-angle glaucoma. Ophthalmology 1992;99:696-9.
17) Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol 1990;300:5-25.
20) Okada K, Watanabe W, Koike I, et al. Alternative method of evaluating visual field deterioration in very advanced glaucomatous eye by microperimetry. Jpn J Ophthalmol 2003;47:178-81.
21) Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol 1984;97:730-7.
22) Araie M, Yamagami J, Suziki Y. Visual field defects in normaltension and high-tension glaucoma. Ophthalmology 1993;100:1808-14.
23) Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh) 2009;53:34-43.
24) Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol 2019;39:259-71.
26) Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Open-angle glaucoma and systemic hypertension: The Blue Mountains Eye Study. J Glaucoma 2004;13:319-26.
27) Moon SK, Jun RM, Choi KR. Comparison of retinal nerve fiber layer thickness in early normal-tension glaucoma and early primary open-angle glaucoma. J Korean Ophthalmol Soc 2010;51:248-53.
29) Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol 2008;19:85-8.
30) McLeod SD, West SK, Quigley HA, Fozard JL. A longitudinal study of the relationship between intraocular and blood pressures. Invest Ophthalmol Vis Sci 1990;31:2361-6.
31) Becker B. Diabetes mellitus and primary open-angle glaucoma. The XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol 1971;71(1 Pt 1):1-16.
33) Pradalier A, Hamard P, Sellem E, Bringer L. Migraine and glaucoma: an epidemiologic survey of French ophthalmologists. Cephalalgia 1998;18:74-6.
35) Ng SK, Burdon KP, Fitzgerald JT, et al. Genetic association at the 9p21 glaucoma locus contributes to sex bias in normal-tension glaucoma. Invest Ophthalmol Vis Sci 2016;57:3416-21.
36) Foster PJ, Broadway DC, Hayat S, et al. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study. Br J Ophthalmol 2010;94:827-30.
37) Varma R, Tielsch JM, Quigley HA, et al. Race-, age-, gender-, and refractive error-related differences in the normal optic disc. Arch Ophthalmol 1994;112:1068-76.
39) Jain V, Jain M, Abdull MM, Bastawrous A. The association between cigarette smoking and primary open-angle glaucoma: a systematic review. Int Ophthalmol 2017;37:291-301.
40) Altintaş O, Caglar Y, Yüksel N, et al. The effects of menopause and hormone replacement therapy on quality and quantity of tear, intraocular pressure and ocular blood flow. Ophthalmologica 2004;218:120-9.
41) Toker E, Yenice O, Akpinar I, et al. The influence of sex hormones on ocular blood flow in women. Acta Ophthalmol Scand 2003;81:617-24.
42) Harris-Yitzhak M, Harris A, Ben-Refael Z, et al. Estrogen-replacement therapy: effects on retrobulbar hemodynamics. Am J Ophthalmol 2000;129:623-8.
43) Atalay E, Karaali K, Akar M, et al. Early impact of hormone replacement therapy on vascular hemodynamics detected via ocular colour Doppler analysis. Maturitas 2005;50:282-8.
44) Battaglia C, Mancini F, Regnani G, et al. Hormone therapy and ophthalmic artery blood flow changes in women with primary open-angle glaucoma. Menopause 2004;11:69-77.
45) Russo R, Cavaliere F, Watanabe C, et al. 17Beta-estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat. Prog Brain Res 2008;173:583-90.
46) Zhou X, Li F, Ge J, et al. Retinal ganglion cell protection by 17-beta-estradiol in a mouse model of inherited glaucoma. Dev Neurobiol 2007;67:603-16.
47) Hulsman CA, Westendorp IC, Ramrattan RS, et al. Is open-angle glaucoma associated with early menopause? The Rotterdam Study. Am J Epidemiol 2001;154:138-44.
49) Pasquale LR, Rosner BA, Hankinson SE, Kang JH. Attributes of female reproductive aging and their relation to primary open-angle glaucoma: a prospective study. J Glaucoma 2007;16:598-605.
50) Nirmalan PK, Katz J, Robin AL, et al. Female reproductive factors and eye disease in a rural South Indian population: the Aravind comprehensive eye survey. Invest Ophthalmol Vis Sci 2004;45:4273-6.
52) Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 2007;8:689-98.
53) Burdon KP, Crawford A, Casson RJ, et al. Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology 2012;119:1539-45.
55) Osman W, Low SK, Takahashi A, et al. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet 2012;21:2836-42.
56) Burdon KP, Macgregor S, Hewitt AW, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 2011;43:574-8.
57) Ng SK, Casson RJ, Burdon KP, Craig JE. Chromosome 9p21 primary open-angle glaucoma susceptibility locus: a review. Clin Exp Ophthalmol 2014;42:25-32.
58) Drance SM, Douglas GR, Airaksinen PJ, et al. Diffuse visual field loss in chronic open-angle and low-tension glaucoma. Am J Ophthalmol 1987;104:577-80.
59) Chauhan BC, Drance SM, Douglas GR, Johnson CA. Visual field damage in normal-tension and high-tension glaucoma. Am J Ophthalmol 1989;108:636-42.
60) Airaksinen PJ, Drance SM, Douglas GR, et al. Diffuse and localized nerve fiber loss in glaucoma. Am J Ophthalmol 1984;98:566-71.
61) Yamazaki Y, Koide C, Miyazawa T, et al. Comparison of retinal nerve-fiber layer in high- and normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 1991;229:517-20.
62) Caprioli J, Spaeth GL. Comparison of the optic nerve head in highand low-tension glaucoma. Arch Ophthalmol 1985;103:1145-9.
63) Gramer E, Bassler M, Leydhecker W. Cup/disk ratio, excavation volume, neuro-retinal rim area of the optic disk in correlation to computer-perimetric quantification of visual field defects in glaucoma with and without pressure. In: Greve EL, Heijl A, ed. Seventh International Visual Field Symposium. Proceedings of the 7th International Visual Field Symposium; 1986 September; International Visual Field Symposium, Amsterdam, the Netherlands. Berlin (Germany): Springer, 1987;329-48.
64) Greve EL, Geijssen HC. The relation between excavation and visual field in glaucoma patients with high and with low intraocular pressures. In: Greve EL, Heijl A, ed. Fifth International Visual Field Symposium. Proceedings of the 5th International Visual Field Symposium; 1982 October; International Visual Field Symposium, Sacramento, CA, USA. Berlin (Germany): Springer, 1983;35-42.
65) Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol 1980;24:621-64.
66) Flammer J. Psychophysics in glaucoma. A modified concept of the disease. In: Greve EL, Leydhecker W, Raitta C, ed. Second European Glaucoma Symposium. Proceedings of the 2nd European Glaucoma Symposium; 1984 May; European Glaucoma Symposium, Helsinki, Finland. Berlin (Germany): Springer, 1985;11-7.
67) Weber J, Schultze T, Ulrich H. The visual field in advanced glaucoma. Int Ophthalmol 1989;13:47-50.
68) Gutierrez P, Wilson MR, Johnson C, et al. Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol 1997;115:777-84.
69) Sawada H, Yoshino T, Fukuchi T, Abe H. Assessment of the vision-specific quality of life using clustered visual field in glaucoma patients. J Glaucoma 2014;23:81-7.
70) Sleath B, Blalock S, Covert D, et al. The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity. Ophthalmology 2011;118:2398-402.